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Abstract:

We have considered one-dimensional rod of length @ occupying the region 0 < x < a. Initial temperature of the
rod is zero placed in an ambient temperature zero. The rod is subjected to the activity of instantaneous moving point heat
source at the point X' which changes its place along X - axis, moving with constant velocity U. The temperature sharing
of the rod in one dimension is described by the differential equation of heat conduction with heat generation terms.
Solution of the temperature distribution is obtained by solving heat conduction equation and relative thermal stresses are
obtained.

1. Introduction density, C is specific heat of the material of the

I _ rod and g is heat generation term. Now consider
n 2014 D T Solanke and M H Durg have studied

an instantaneous moving point heat source
located at point X' and releasing its heat
spontaneously at time t. Such point moving heat
source in one dimension rod is given by the delta

temperature distribution and thermal stresses in thin
solid cylinder, thin hollow cylinder, thin rectangular
plate, thick circular plate, one dimensional rod in [9]
to [25]. Now in this paper authors determined the

temperature distribution and thermal stresses in one- function
dimensional rod with moving point heat source with g(x,t) = gipé}(x — x'), (2.2)
guasi-stationary condition. This is new contribution '
. : - where X'=ut
in the field of thermo elasticity. H 2 1) red
2. Formulation of the problem for Robin’s ence (2.1) reduces to
boundary condition or 1 , el
_ , —+—0; (X —ut) =——— (2.4)
The temperature sharing of the rod in one ox2  k o ot

dimension is described by the differential equation of

heat conduction with heat generation term, as in [7] 3.Robin’s boundary condition and initial

is gi b .
IS gIven by condition
by We formulate the homogeneous Dirichlet’s
0T 1 10T boundary conditions and initial condit
—+—Q=—— (2.1) oT
x> k- act k——-hT=0 a x=0, t=0 (3.1
where T =T (X,t) is temperature distribution, OX
k is thermal conductivity of the material of the kg +hT=0 at x=a, t=0 (3.2
k OX
rod, oo = —— is thermal diffusivity, pis
Cpp
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where K is thermal conductivity and h is hget, —2a _Y,
heat transfer coefficient of the material of the gP T(e @ -D-(e ¢ +)

Cl =
rod. k ~Ya u, ——a
In the solution of the moving heat source Ao(e @ 1) —a(e * +1)
problem it is convenient to let the coordinate " u
system move with the source. This is achieved ol o’ 1y 20% e gy
by introducing a new coordinate X defined by C, ngi " u - (5:4)
X =x-ut XO(E_J@'—Q.) _E(e_aa +1)
Hence (2.4) reduces to a
2
T 1 10T T _
X%k al ot X k

4. Quasi stationary condition
Stationary medium means initially at zero
temperature. Hence quasi-stationary condition is

oT
mathematically defined by setting E =0 and

hence (3.4) reduces to

T wual 1
5+ == OP8(X) (@)
oX o OX k
above equation can be transformed into a more
convenient form by introducing a new variable

O(X) defined by

_ Sy
T(X)=0(X)e 2« (4.2)
Hence (4.1) reduces to

2% (u)\Y, 1, X (4.3)
I —__q. X )e2a .
- (Zaje L oPo00)e

5. Solution of temperature distribution
Solution of (4.3) is

§ 2
0= Cle(;axje(_:at] + cze(_;axje(;“q
o e(_ix)e[?‘jt] - e[ztxje(_;at] (5.1)

From (4.2) and (5.1), we obtain

u? 2
T(xt)=c¢ + cze(_ixje[ @ t) 4 Off{e(ix)e[ a t] 1

(5.2)

Applying the condition (3.1) and (3.2), we get

From (5.2), (5.3) and (5.4), we get

P
k _Ya vl
Aole @ =D ——(e * +1)
(04

A —ga_ - —ga u u?
T(xt) =3 %a(e b/ {1e[“xje(“t]]

s Zuzt]
ku

6. Thermoelastic problem
Let us introduce a thermal stress function 7 related

to component of stress in the material of one
dimensional rod as in [8]

_ oy

yy 8X2
with the boundary condition
Oy =0atx=0,x=a, (6.2

(o) (6.1)

where

X=%cTXp (6.3)
X.c is complementary functionand y , is particular
function. ) and  , are governed by a linear

homogeneous differential equation and linear non-
homogeneous differential equation.

Vi =0 (6.4)
Vi, =—AEV?T, (6.5)

2

0
where V2 = —— (6.7)
x>
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" is temperature change I'=T —T;, where T; is , " 2, ho (0 e a4
initial temperature which is zero. c:% 1-e @ [{AEe> | Y —
hole @ —- (e " 11
7 Solution of the thermoelastic problem *
2u®
%o u g
koot (5 - K +—e .
ol 2% e —n—(e @ +1) U, [—tj
r=9t u 1—e( o )e ¢ u
k U, u . -Ya
Aole @ -D——(e * +1) u u
o 7”00‘ ——a -—a )
2 p (e -D-(e > +]) C
; (_ng {ZUtj g9 JAE| u l_eu
_000 gl a gl @ (7 k | 2 ~“a u, —a
ku ho(e * -D——(e * +1)
o
Let the compatible form of . satisfying (6.4) be 2
& cu-
e =ox3 +dx? (7.2) tool-e (7.7)
Let compatible form of D satisfying (6.5) be
u ] Inserting the value of C and d in (7.5), we get
e O R A1) [P
xp=—rES u R i "
k Ya u “Ya 2 u B 7"00* -—a -—a
Aole @ —1)—a(e o +1) gP _u, u®, T(e “ —D-(e * +1)
yyz—'kx l-e ¢ KAEe« 1 .
agl| x2| 77 B : hole @~ -2 @ +1)
_09E X% TaTa e |(7.3) o
ku | 2 u?
X=%c +Xp gives Uy U,
a2 ) o] | M et - o+
Aot , —oa —a e L9 hE
, , gP —— (e * =)—-(e * +1) u k _ug u _ug
X =CX +dx _}\‘ET U Uy 7\.0(6 o —1)—a(e a +1)
Aole @ —1)-L(e @ +1) =
e u? a’,
xtf=—edn [+>(1-e
2
K _a? et |_0of | xEo? xSt (T4) )
2 u? ku | 2 u? -
From (6.1) and (7.4), we obtain r u u
oot , =2 o2 2
7"00( LY Ya g_P 7(6 —1)—(6 +1) ,EX ZL'[
gP = * -D-(e > +1) -2 U l-g 2 g @
Oyy =60x+2d —AE= - 4 - k N LI p U LA .
_— —_— o _ — o
hole “a—l)—g(e o 1) ol ACRRE
(7.8)
2 2
Uy A agP Uy AT (7.5) 8. Conclusion
x|1-e @ e kU l-e*e In this paper we have determined the time

dependent temperature distribution and thermal
stresses in one dimensional rod with moving point
Applying the condition (6.2), we get heat source in stationary condition with analytical
approach. by giving particular values to the
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parameters one can obtain their desired results. From
the stress equation we observe that initially (t =0 )
stress vanishes.
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